Monochromatic 4-term arithmetic progressions in 2-colorings of Zn

نویسندگان

  • Linyuan Lu
  • Xing Peng
چکیده

This paper is motivated by a recent result of Wolf [12] on the minimum number of monochromatic 4-term arithmetic progressions (4-APs, for short) in Zp, where p is a prime number. Wolf proved that there is a 2-coloring of Zp with 0.000386% fewer monochromatic 4-APs than random 2-colorings; the proof is probabilistic and non-constructive. In this paper, we present an explicit and simple construction of a 2-coloring with 9.3% fewer monochromatic 4-APs than random 2-colorings. This problem leads us to consider the minimum number of monochromatic 4APs in Zn for general n. We obtain both lower bound and upper bound on the minimum number of monochromatic 4-APs in all 2-colorings of Zn. Wolf proved that any 2-coloring of Zp has at least (1/16 + o(1))p 2 monochromatic 4-APs. We improve this lower bound into (7/96+o(1))p. Our results on Zn naturally apply to the similar problem on [n] (i.e., {1, 2, . . . , n}). In 2008, Parillo, Robertson, and Saracino [5] constructed a 2-coloring of [n] with 14.6% fewer monochromatic 3-APs than random 2-colorings. In 2010, Butler, Costello, and Graham [1] extended their methods and used an extensive computer search to construct a 2coloring of [n] with 17.35% fewer monochromatic 4-APs (and 26.8% fewer monochromatic 5-APs) than random 2-colorings. Our construction gives a 2-coloring of [n] with 33.33% fewer monochromatic 4-APs (and 57.89% fewer monochromatic 5-APs) than random 2-colorings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A probabilistic threshold for monochromatic arithmetic progressions

We show that √ k2k/2 is, roughly, the threshold where, under mild conditions, on one side almost every coloring contains a monochromatic k-term arithmetic progression, while on the other side, there are almost no such colorings.

متن کامل

On a Question Raised by Brown, Graham and Landman

We construct non-periodic 2-colorings that avoid long monochromatic progressions having odd common differences. Also we prove that the set of all arithmetic progressions with common differences in (N!−1) ∪ N! ∪ (N!+1)− {0} does not have the 2-Ramsey property.

متن کامل

On rainbow 4-term arithmetic progressions

{sl Let $[n]={1,dots, n}$ be colored in $k$ colors. A rainbow AP$(k)$ in $[n]$ is a $k$ term arithmetic progression whose elements have different colors. Conlon, Jungi'{c} and Radoiv{c}i'{c} cite{conlon} prove that there exists an equinumerous 4-coloring of $[4n]$ which is rainbow AP(4) free, when $n$ is even. Based on their construction, we show that such a coloring of $[4n]$...

متن کامل

Improving the Use of Cyclic Zippers in Finding Lower Bounds for van der Waerden Numbers

For integers k and l, each greater than 1, suppose that p is a prime with p ≡ 1 (mod k) and that the kth-power classes mod p induce a coloring of the integer segment [0, p− 1] that admits no monochromatic occurrence of l consecutive members of an arithmetic progression. Such a coloring can lead to a coloring of [0, (l − 1)p] that is similarly free of monochromatic l-progressions, and, hence, ca...

متن کامل

Monochromatic progressions in random colorings

Let N(k) = 2k/2k3/2f(k) and N(k) = 2k/2k1/2 g(k) where f(k) → ∞ and g(k) → 0 arbitrarily slowly as k → ∞. We show that the probability of a random 2-coloring of {1, 2, . . . , N(k)} containing a monochromatic k-term arithmetic progression approaches 1, and the probability of a random 2-coloring of {1, 2, . . . , N(k)} containing a monochromatic kterm arithmetic progression approaches 0, as k → ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 119  شماره 

صفحات  -

تاریخ انتشار 2012